COMPASS: An ab Initio Force-Field Optimized for Condensed-Phase ApplicationssOverview with Details on Alkane and Benzene Compounds

نویسنده

  • H. Sun
چکیده

A general all-atom force field for atomistic simulation of common organic molecules, inorganic small molecules, and polymers was developed using state-of-the-art ab initio and empirical parametrization techniques. The valence parameters and atomic partial charges were derived by fitting to ab initio data, and the van der Waals (vdW) parameters were derived by conducting MD simulations of molecular liquids and fitting the simulated cohesive energies and equilibrium densities to experimental data. The combined parametrization procedure significantly improves the quality of a general force field. Validation studies based on large number of isolated molecules, molecular liquids and molecular crystals, representing 28 molecular classes, show that the present force field enables accurate and simultaneous prediction of structural, conformational, vibrational, and thermophysical properties for a broad range of molecules in isolation and in condensed phases. Detailed results of the parametrization and validation for alkane and benzene compounds are presented.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Electronic properties studies of Benzene under Boron Nitride nano ring field

In this study, B12N12 Nano ring has been selected because it consist of four 6-side rings and polar bonds B-N which in comparison with non-polar bonds C-C, is more suitable for the study of the absorption of other compounds. So reactivity and stability of Benzene alone and in the presence B12N12 nano ring field checked. To determine the non-bonded interaction energies between Benzene and B12N12...

متن کامل

Ab Initio Calculation 29Si NMR Chemical Shift Studies on Silicate Species in Aqueous and Gas Phase

Nowadays NMR spectroscopy becomes a powerful tool in chemistry because of the NMR chemical shifts. Hartree–Fock theory and the Gauge-including atomic orbital (GIAO) methods are used in the calculation of 29Si NMR chemical shifts of various silicate species in the silicate solution as initial components for zeolite synthesis both in gas and solution phase. Calculations have been performed at geo...

متن کامل

Electronic properties studies of Benzene under Boron Nitride nano ring field

In this study, B12N12 Nano ring has been selected because it consist of four 6-side rings and polar bonds B-N which in comparison with non-polar bonds C-C, is more suitable for the study of the absorption of other compounds. So reactivity and stability of Benzene alone and in the presence B12N12 nano ring field checked. To determine the non-bonded interaction energies between Benzene and B12N12...

متن کامل

A Toolkit to Fit Nonbonded Parameters from and for Condensed Phase Simulations

The quality of atomistic simulations depends decisively on the accuracy of the underlying energy function (force field). Of particular importance for condensed-phase properties are nonbonded interactions, including the electrostatic and Lennard-Jones terms. Permanent atomic multipoles (MTPs) are an extension to common point-charge (PC) representations in atomistic simulations. MTPs are commonly...

متن کامل

The effect of Environmental exposure to some chemical solvents on DPPC as important component of lung surfactant: an ab initio study

One of the main components of lung alveoli is surfactant. DPPC (Dipalmitolphosphatidylcholine) is thepredominant lipid component in lung surfactant that is responsible for lowering surface tension in alveoli in thisarticle. We used a very approximate model with computational method of Ab initio to describe the interactionsbetween DPPC as important component of lung surfactant and some chemical ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998